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Abstract

Realistic rendering of participating media like clouds requires multiple anisotropic light scat-
tering. This paper presents a propagation approximation for light scatteréd dmtection bins,
which reduces the “ray fefct” problem in the traditional “discrete ordinates” method. For a regu-
lar grid volume of® elements, it takes ®{ n° log n + M2 n3) time and O n3 + M?) space.

This document is eprinted from the proceedings of the Fifth Euographics Workshop on Ren-
dering, Darmstadt, Germany, June 13 - 15, 1994

1. Introduction

To render realistic images of clouds, one must take into account absorption and multiple scat-
tering of incoming illumination. In addition, to produce the bright edges surrounding a cloud
when the sun is behind it, one must account for the anisotropic, mainly forward, scattering of light
from the water droplets.

In 1984, Jim Kajiya and Brianovi Herzen [Kaj84] proposed two methods for rendering
clouds. The first was the two-pass “slab” method, which accounted only for single scattering. The
first pass deposited flux from the light source into the cloud voxels one horizontal layer at a time,
taking into account the attenuation by the opacity in each lalgersecond pass gathered the scat-
tered flux along each viewing ragking into account the attenuation between the scattering event
and the viewpoint. &s [\W0ss83] used a similar method to produce fractal clouds in terrain
scenes. Nishita, Miyakawa, and Nakamae [Nish87] have considered anisotropic single scattering
in fog, and Inakage [Inak89] has included cases where the density and phase function of the scat-
tering material varies from point to point. Kanedal. [Kan90] also simulate anisotropic scatter-
ing in clouds and fog, including one case of double scattering: first Raleigh and Mie scattering to
determine a fixed sky illumination, and then one more scattering of this illumination within a fog.
Related work was also done by [Blas93].



Kajiya’s second method was an application of the multiple scattering ideas of Chandrasekhar
[Cha50], which use spherical harmonics to expand, at each point, the light intensity as a function
of direction. The scattering phase function is also expanded in spherical harmonics, resulting in a
set of coupled partial dérential equations for the spherical harmonic ficiehts of intensity as
functions of the spatial coordinates. Kajiya attempted to solve these equations for the case of iso-
tropic scattering, but it is unclear whether he succeeded, since all the pictures in [Kaj84] were pro-
duced by the simpler “slab” method.

The transport equations Kajiya used, described in the next section, have a long history in
radiation heat transfer in mechanical engineering, and in particle transport in nuclear engineering.
Siegel and Howell [Sie92] give a good summary of solution techniques. Holly Rushmeier
[Rush87, Rush88] applied two of these solution techniques to computer rend@angogating
(i.e. absorbing, emitting, and scattering) media. One was the Monte Carlo method, where a ran-
dom collection of photons or flux packets are traced through the volumegaoimderandom scat-
tering and absorption. This method can accurately model all the physics of scattering, but may
take an impractical number of random trials to converge to a useful solution.

The other was theonalmethod for isotropic scattering ontyhich divides the volume into a
number offinite elementsvhich are assumed to have constant radiosity. This requires the calcula-
tion of aform factorbetween every pair of elements. In a cubdl efn® elements, there will be
N2 =nb such pairs of elements. In t@Balerkinfinite element scheme, each form factor involves a
double integral over points in both elements, as well as along the path between the two points,
giving a total of 7 integration variables. Rushmeier approximates this by an inverse square factor
and a 1-D integral of opacity along the path connecting the element centers. If each @) the O(
intervening elements has féifent scattering properties, this 1-D integral takes timg. Q(sing
an iterative method for solving the resulting matrix equation which cgasen O(1) iterations,
the total computational cost is I@I. This cost can be reduced somewhat by grouping adjacent
elements into layer interaction pairs, in the style of Hanrahan, Salzman, and Aupperle [Hanr91],
as was done by Bhata [Bhat9Bushmeier [Rush88] also considers anisotropic scattering, but
only in the single scattering case.

Zhiquiang Bn [Tan89] applied the ideas of finite element analysis to the solution for the
spherical harmonic cogfients in the case of multiple anisotropic scattering. If therdlaierms
in the expansion, this results in a matrix of SN2 Tan uses thpoint allocation(or point col-
location) method, which allows the representation of non-constant basis functions. He points out
that this requires integrals over only one 3-D position, reducing the number of integration vari-
ables by 3. This simplification has been misinterpreted by Siegel and Howell [Sie92], who incor-
rectly claimed that the method is N)( Bhata [Bhat92] has applied this method to computer
rendering, but could deal with only a small number of voxels, due to rﬂe+®.42n6) Cost.

Another approach is to allocate the radiosity leaving each volume element into a collection of
M direction bins of constant intensikssuming the interaction between two elements involves
only one direction bin for flux transit (reasonable only for distant pairs of elements), this reduces
the number of non-zero matrix elementdviti?, and the cost to compute them tmb(r Mn6).



Sparse matrix solution methods are then available, as in letraE[Imm86].

In thediscrete odinatesmethod in radiation trans{€iSie92, Chan50], th#l direction bins
are represented by discrete directions, chosen to give optimal Gaussian quadrature in the inte-
grals over a solid angle. Lathrop [Lath68] points out that this process producederdy, ef
because it is equivalent to shooting the gndrom an element in narrow beams along the dis-
crete directions, missing the regions between them. He presents modifications to avoid these ray
effects, but the resulting equations are mathematically equivalent to the ones mentioned above for
the spherical harmonic cdieients. This implies tha¥l properly distributed direction bins specify
the directional intensity distribution to the same detaMaspherical harmonic coefficients.

The current paper presents an approximation to the discrete ordinates method, which reduces
the ray efiect by shooting radiosity into the whole solid angle bin, instead of in a discrete repre-
sentative direction. As a shooting method, it is similar to the progressive radiosity method of
Cohenet al. [Coh87], and can be shown to corgeffor albedo less than one. (See [Gort93] and
section 6 belowy Patmore [Patm93] has used a discrete ordinates shooting algorithm (subject to
ray efects) for a multiple-scattering rendering of clouds, and his paper inspired the current one.
Langeret al [Lang93] have implemented the discrete ordinates method on a massively parallel
SIMD machine, and included surface reflections. (See section 10 below.)

My chief enhancement is to spread the shot radiosity throughout the direction binfin an ef
cient way which handles a whole plane of source elements simultanechitdyreducing the ray
effect. Another enhancement treats multiple scattering within a single receiving element before
the next shooting step. | useM)) space to store the total radiosity in each direction bin at each
element, and also the unshot radioslye direction-bin-indexed matrix representing the aniso-
tropic scattering function takes an additiondt/é)(space. The computation for each pass through
the M shooting directions takes time M¢3logn + M2n3) = OMNIogN + M2N). This lage
speedup compared to the other methods discussed can only be achieved with a regular cubical
grid. Since it makes essential use of the homogeneity of the grid, my method will not work on
more general finite element meshes.

2. Transport Equations

In thermal radiation heat transport, a participating medium which absorbs radiation heats up,
and re-emits “black body” radiation isotropicalljhis efect is usually not important in render-
ing, and | will neglect it below for simplicityand deal only with absorption and scattering. More
complete discussions are available from [Sie92] and [Rush88].

Let I(x,w) be the intensity at positianin directionw, and letki(x) extinction codfcient of
the participating medium. This is the total opacity (absorption plus scattering) per unit length so
ki(x) 1(x,w) dsis the intensity removed along an infinitesimal ray segmieatx. Let thealbedq
a, be the fraction of this removed intensity scattered in other directions, anddbaa#gefunction
f (w, W), be the directional distribution function for this scattered intersityhaff , f (w, w') dw
is the fraction of the scattered intensity from directibthat ends up in solid angk Then



ak; (x) dsJ[ f(w,w! (X, w)dw

TU

is the intensity scattered into the directwmlong the ray segmedsfrom other directionso’ in
the 4T unit sphere. (This is theource functionSie92] in the absence of volume emission.) The
integro-differential equation fd(x,w) is thus

dl (;j(,sw) = —k,[ (X) | (X, 0)) + a_kt (X) 4l;[f (w’ (D’) | (X, (L)') do'.

Using an integrating factor (see [Sie92], [Rush88], oillP2)), this can be integrated along a
pathx'(s) =x - sw, from x = X(0) toxg =X (Sp) at the edge of the medium, to give the integral form

So
| (%, 0) = | (Xg @) exp E—Ikt (X () dsg
0

So s
raf F (¢ (9) exp g—gkt (¢ (0) A [ 1(65,0) 1 (69, ) de' s W

Now assume that the region under study is divided into a collection of cubical volume ele-
mentsV,, which | also call cells, voxels, an 2-D, pixels. Assume that the unit sphere is divided
into a number of direction birj, and that(x,w) is constant fok in V andw in By. In the imple-
mentation, these constant values are represented by a tmatugh[K][l] , Which stores the
intensity multiplied by the solid angle of bBy, size[l] . | assume that the extinction chef
cientk; is constant in each elemary, and stored in an arr&yik] . The input values fdgt[K]
are produced by a cloud modeldescribed briefly latet assume that the albedas constant
everywhere, to avoid creating an extra artat x lie in cellVj, andw lie in angle binB;. Then
with these assumptions, we can integrate equation (1)Bpteiget

throughl[i][j] = Jl(x, w) dw (2)
 dthoughl n()T T@] 0¥ C
= jdoog size[ T(w)] expD—J)'kt[ n(s ] ds[

through[ n(9] I(w)] , |, H
size[ | (w')] de dsg

| 0, O ,
ra{{(kt[ n(s)] )expD’g(kt[ n(t] )dtDJ;[f(w,w)
wheren(s) is the index of the volume element containi(g), andl(w) is the index of the angle

bin containingw. Suppose, for simplicifythat all rays fronx to cell Vv, lie in angle binj. (The
algorithm described in the following sections takes special account of interactions involving two
or more bins.) Geometric arguments (see [Rush88]) show that

Volume (V,)
Geomy = !dw dsl———— (3)
: n(5 =k r



wherer is the distance between the centers of ¢ellsdk. Thus the multiplier giving the contri-
bution ofthrough[K][l] to the last term |n equation (2) is the “form factor”

Volume (V,) f(w w)

Fij = a—— 5 KIKl  exp J’(kt[ n(t)] )dtgldww @

| precalculated by Simpson’s rule integration¥he M matrix version of the phase function:

: o o W, W)
bintobin[l][j] = Jdoo!d S|ze[l]
giving the fraction of the flux from binh directions which scatters into hin Replacing the factor
dm’M in equation (4) by its average vaImeObm[l]m we get
J size[l] sizef]] ’
m me (V) r
Frij U —kkt[k] exp D—I(kt[ n(t)] )thbintobin[I][j] : 5)
r2size[j] 0J O

In the implementation, | take the unit of length to be the side of a cubig,celb that the factor
Volume(V,) drops out. Note that thisfetts the extinction cokfientskt[n] , whose units are
inverse length.

Using these form factors, one can write the usual system of linear equations for the unknown
fluxesthrough[K][l] . I have developed an approximate solution method which accumulates
opacity on the flyas the flux is propagated in a shooting procedure. As in progressive radiosity
for surface illumination [Coh88], | use an auxiliary arceghot[k][l] of sizeMN = Mn?, to
store the flux waiting to be propagated, and need not stom?tire= M2nP form factors.The dif-
ficult part in evaluating equation (5) is in computiexp (- (r)(kt[ n(t)] )dt) by integrating
along a straight line joining the pixel centers. My method approximates each such term as a
weighted sum of similar terms, obtained by integrating over piecewise linear paths that lie near
the straight line. (See figure 4.) This permits sharing of calculations to computéthietthe
M2N2 form factors in time QNIN logN + MZN).

For my test images, | used the Henyey-Greenstein phase function [Heny40]

2
flow) = = 19

AT (1+g2-2g%)*?

wherex is the dot product of the two unit direction vectwrandw’, andg is an adjustable param-

eter between -1 and 1, which is positive for forward scattering, negative for backwards scattering,
and O for isotropic scattering. For an appropriate choigg thiis is a good approximation to the
exact Mie scattering [Mie09] from spherical water droplets. Except for the first bounce from the
light source, and the last bounce to the viewpoint, which use one exact direction each, all interme-
diate bounces are via the arkagtobin , so any phase function can be used efficiently.
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Figure 1. Direction bins and binomial weight distribution.
3. Simultaneous Shooting

Consider a unit cube of un-normalized direction vectors, with each face divideanxdm?2
equal bins, giving a total dfl = 247? direction bins. The previous section assumed that the flux
through[K][l] is uniformly distributed in the direction bB), so that the intensity is constant
for any direction inside the bin. From now on, | assume that the flux within a single bin is propor-
tional to surface area on the unit direction cube. This assumption is necessary fcidm ef
method, described next, for propagating the flux incrementally from a cell to its close neighbors.
It introduces some error in the light distribution, but the error decreases with decreasing bin size.

For simplicity | will first discuss the method for the 2-i,= 1 case shown in figure 1. There
areM = 8m = 8 direction bins. | will first describe a simple scheme for propagating the flux which



gives a binomial distribution, and then show how to modify it to give a uniform distribution. Con-
sider the bin between 27a8nd 315 (bin 6 counting from 0), and suppose the pixel in the center of
the square has a unit flux leaving within this bin. Approximately half of this flux enters the pixel
below and half enters the one diagonally below and to the right, so these two pixels are marked in
figure 1 with the weights 1/2. If each of these pixels distributes its flux in the same (1/2, 1/2)
scheme to the row belowhe flux in that row would be 1/4, 1/2, 1/4, as shown. In the third row
below the shooting pixel, the pattern is 1/8, 3/8, 3/8, 1/8. In general atipieltijeith pixel in

thenth row below the shootlng pixel at (0, 0), the We|ghI1_| -, giving a binomial distribution.

The binomial codicient ' n counts the numbér of-step paths from (O, 0) to, (1),

obtained by taking aniyof the IstenpsI In a diagonal direction, and the rest directly downwards.

This binomial (1/2, 1/2) scheme distributes the flux across the bin, but not in the uniform way
desired. The desired distribution is shown in figure 2, with the pixels in row 3 marked with the
weights 1/2, 1, 1, and 1/2. The outer pixels are counted half in this bin and half in adjacent bins.

1/2 | 1/2

bin 7
1/2 1 1/2

1/2 1 1] 12

bin 6

Figure 2. Bin 6 from figure 1, with desired weight distribution.

The sum of these weights is 3, so they must be normalized by dividing by 3 to give the portion of
the bins flux reaching each pixelopropagate this weight pattern to the next row beliost add

1/2 to each of the outer two pixels, to get a pattern ofallThien add each of thess,lhalf to the

pixel below, and half to the pixel below and to the right. The result is the desired pattern 1/2, 1, 1,
1, 1/2 in the fourth row.

This pattern of weights, when normalized, shows the proportion of the shot flux reaching a
receiving pixel in the absence of intervening opadityaccount for opacifyeach value is multi-
plied by the transparency at the current pixel, before propagating by the (1/2, 1/2) scheme, so that
the opacity is accumulated along the propagation path. The added adjustment to the left most



pixel is similarly attenuated by the opacities in the column above it, and the adjustment to the
right most pixel, by the opacities along & 4Bagonal. The iterative process actually starts with
the outgoing flux to be shot in a direction bin, instead of the unit flux discussed aboves]iit row
builds a pattern af+1 appropriately weighted and attenuated values, which are dividedray

added into theeceive array at that row.

The arithmetic involved in this iteration is independent of the horizontal displacement
between the shooting and the receiving pixel, so it can be done simultaneously for each pixel in a
horizontal row, as indicated by the code fragment in figure 3.

/* Initialize with unshot radiosity from row i0. */
for (j = 0; j < columns; ++j) {
work][j] = unshot[iO][j];
corner[0][j] = unshot[iO][j];
corner[1][j] = unshot[iO][j];}
for (i =10 + 1; i < rows; ++i) {
[* Propagate radiosity to row i. */
for (j = 0; j < columns; ++j) {
s=i-i0;
tempwork(j] = .5 * work([j];
if (j > 0) tempwork][j] += .5*work[j-1];
receiveli][j] = tempwork]i][jI/s;
/* Adjust tempwork using corner arrays. */
tempwork]j] += .5 * corner[O][j];
if (j > 0) tempwork[j] += .5 * corner[1][j-1];}
/* Update work and corners, to account for transparency. */
for (j = 0; j < columns; ++j) {
transparency = exp( - raylength * kt[i][j] );
work[i][j] = tempwork]i][j] * transparency;
corner|[0][j] *= transparency;
if (j > 0) corner[1][j] = corner[1][j-1] * transparency;
else corner[1][j] =0.; } }

Figure 3. Code fragment for 2-D flux propagation.

The actual implementation contains subscripts indicating the bin direction and starting row
not shown in the fragment. These let multiple directions and starting rows be propagated together
permitting multiple bounces per pass, as discussed below.

The arraywork[]  stores the flux propagating in the direction bin 6 in figure 2, and is initial-
ized with the unshot flux from roi@, unshot[iO][] . The arraycorner[O][] , hamed after
its 3-D use, stores the flux propagating directly downward, used to adjust the left-most pixel in
figure 2, and the arragorner[1][] stores the flux propagating diagonatly adjust the right-
most pixel. The constamaylength  is the average length of a ray/pixel intersection segment,
and depends on the bin index. For a square collection of pixels;omith = columns = n, this
code fragment computes then?))(interactions of the shooting row with the pixels below it in



time O@Z), instead of the @f‘) time which would be required to accumulate the opacity for each
interaction along a straight path of lengtmDHowever thisn® savings factor comes at a cost in
accuracyThe attenuation is not accumulated only along the straight path between a shooting and
receiving pixel, but instead along the many possible propagation paths of downward and diagonal
steps connecting them. Several of these paths are shown in figure 4, filling out a parallelogram.

Figure 4. Paths connecting two pixels.

The opacities at all the pixels in this parallelogram will influence the occlusion of the flux
shot from pixel (0, 0) and received at pixeln). The opacity at pixel (k) contributes according
to the number of propagation paths passing through it. Paths belonging to the simple (1/2, 1/2)
scheme are weighted by 1/2vhile those which first gbsteps along one of the tvomrner
arrays, being divided by 2 only on the last step, are weighted By'f/zl. Thus, neglecting the
nonlinearity of the exponential function, the opacity contribution from pjxk},(when 0 g <k,

is
_ O go ko _
zing?—jkﬂ{%wiz'_ ZZ'H‘ !

The binomial codfcient outside the square brackets represents the number of pathg &pto (

(i, n). The three binomial cokegients in the square brackets represent the number of paths from
(0, 0) to {, k) using, respectivelyhe (1/2, 1/2) scheme aloneteps of verticatorner propaga-

tion, orl steps of diagonalorner propagation.

This opacity contribution is show as a function of the locaifidk),(with k increasing down-
wards, forn = 25, and = 5, 9, 13, and 17, in figures through %, respectivelyBlack denotes
the greatest contributions, and the palest grey is used for any non-zero contributior. The
case in figure 5¢c shows mainly théeet of the binomial (1/2, 1/2) scheme alone. The weight is
concentrated near the straight path, but spread somewhat, blurring the shadows. For the other



shown, the two summations giving the contributions fronctireer arrays bias the contribu-

tion toward one of theorner directions, giving extra weight to shadowing objects in these
directions. | believe these continuously varying shadow errors are less serious than the discontin-
uous illumination errors due to the ray effect.

(@) H (b) H (© H (d) H

Figure 5. The number of paths passing through each cell.

4. The 3-D case

In the 3-D case, the flux in a direction bin shot from a central voxel spreads out across the
faces of a cubical shell. Figure 6 shows the weights for one of the 24 direction bingis the
case, marked on a surface layer of>a7/x 7 cubical shell. ¥xels shared between two adjacent
bins are marked with weight 1/2, and those shared between four adjacent bins are marked with
weight 1/4. Only voxels at the eight cube corners are shared between three adjacent bins, and are
marked with weight 1/3. These corners require a separate correction.

First consider the case where all four corners have weight 1/4. The analogy to the 2-D case
should be cleaiThe pattern of weights of value 1, 1/2, and 1/4 can easily be constructed from the
smaller pattern of all &’in the next shell inwards. Simply divide each value in the smaller pattern
by 4, and add it to the appropriate four direct or diagonal neighbors. The procedure to reconstruct
the all 15 pattern is a little more complicated, since four whole edges of weight 1/2 must be added
on. The neededdge arrays can be maintained by the 2-D procedure described in the preceding
section. These 2-D iterations require feorner arrays, along the four corners of the direction
bins. The foucorner arrays are also used to adjust the corner values of the pattern of weights to
exactly 1, since the addition of teelge arrays leaves them off by 1/4. The weighted attenuated



work valuess layers beyond the shooting plane are divideszbaynd added into theeceive
array at that layer. Finally, 1/(@ times thecorner array, if any, corresponding to a cube main
diagonal direction is added teceive  to make the final weight 1/3.

/4 | 1/2 | 12| 1/4

1/2 1 1| 12

1/2 1 1| 1/2

/4 | 1/2 | 172 | 1/3

Figure 6. Weights for a layer in a 3D bin.

The temporaryork , edge, andcorner arrays are initialized with the? unshot direc-
tion bin flux values in a shooting plane, and propagate their flux n%) @4ceiving elements,
using 0(13) time to produce @(5) interactions. Thus the total cost for propagating a single bin
direction for then shooting planes is @‘b This last factor oh can be reduced to O(lag by
maintaining these temporary arrays from all the shooting layers, as the receiving layer progresses
through the volume, and recursively consolidating them when the resulting error is small.

The only computational dérence between the treatment of the various shooting layers is the
inverse square factorsf/ Suppose we take the flux in therk , edge, andcorner arrays for a
shooting layer at separatigrirom the current receiving layeand at each entrput half the flux
into the corresponding entry in the array for the shooting layer at sepaa#ipand half into the
corresponding entry for separati®t a. These two layers each have their own inverse square fac-

tor, so the effective inverse square factor will become
1, 1 _ &+a® _1pgi+a/s ¢
2

2(s-a2 2(s+a)? (sz_a)2 £ 0(1-a2/82)%C

(6)

We start witha = 1, and redistribute layers with odd separations into layers with even separations.



Given an error toleranae we can find a separatigg beyond which this consolidation results in
a “form factor” error of less thae. This flux consolidation can be continued recursivalythe

ith level of recursion, we redistribute the flux in layers of separatiag + 2*1+ 2k, fork =1, 3,

5, ..., onto layers of separatiofisa ands + a, with a = 2. Using equation (6), one can show that
for suficiently lagetg, independent of the volume array sidehe total error introduced is less
thane. The number of layers remaining after this consolidation is Mjlog

It is actually possible to reduce the O(lggactor to O(1) by consolidating the voxels within
a layer as well as between adjacent layers, in the manner of [Hanr91] and [Bhat93]. The addi-
tional errors would not be Ige, because the occlusion effects at large distances become fuzzy, as
shown in figure 5. | have not coded this enhancement, because the pradticahabs between
O(logn) and O(1) are small.

5. Them > 1 case

Form> 1, the propagation is more complicated. Woek , edge, andcorner arrays are
maintained only for separatiosdivisible bym. For cellsi andk with separations less tham
more accurate galerkin type geometric form factesny, are precomputed using Monte-Carlo
integration, in place of the approximation in equation (3). These are used to propagate the flux
from thework , edge, andcorner arrays at separationsnto get theeceive  flux at cells at
separationem+ 1 up tonm+ m- 1, and to account for thefe€t of the opacities in these cells on
these arrays. Theork , edge, andcorner are then updated as discussed above, to propagate
the flux to cells at separation £ 1)m. | have implemented tha = 2 case, with 96 direction bins
in 3-D, and used it to produce all the results in this paper.

6. Scattering of received flux

Once the flux in a direction bin is received in a cell, it must be added to the tally in
through , for use in a final extra bounce towards the viewpoint during rendering. It must also be
scattered into thenshot flux in each of thé/ direction bins at the receiving cell, using one row
of theM x M scattering matriointobin . This costs timé, so the total cost per direction bin
is O(n3log n+ Mn3). The logn is missing from the second term, since the flux from all shooting
layers is maintained during one pass through the volume, and consolidatedénte . A pass
through allM direction bins costs time M(n3log n+ M2n3).

Note that in equation (5), the product of all the factors after the atbisdess than 1, so after
k bounces, the flux is decreased by a factor of atasaBor a fixed albeda less than 1, the error
can thus be made smaller than a set tolerance after a number of passes that dependsamy on
not onn, that is, in O(1) passes. For scattering from water droplets in claigisery close to 1,
which would theoretically make the O(1) iteration count vergdam practice, the flux leaks out
at the edges of the cloud, so there is reasonable convergence evern=when

The finite element implementations of Rushmeier set the form factor between a volume ele-



ment and itself to zero [personal communication], because her inverse square approximation to
the form factor had a singularity in this case. Howgterapproximate dense clouds withgear
enough elements for practical computation, it is necessary to account for scattering within a single
element. ® do so, | assume exactly forward scattering, a fairly good approximation for water
droplets, in order to calculate the probability of higher order scattering. The multiple scattering
events are then governed by a Poisson distribution [Fell68]. lhetthe average length of the
intersection of a ray in the incoming direction bin with a volume element cube of ok ety

unit length, and leh = kl. Then the probability that the ray emges unscattered &" and the
probability of emerging aftdy bounces iaPeM bl . At each cell the flux imeceive  from direc-

tion binB; is distributed asnshot andthrough flux into all binsB; for that cell by the factors

B _byb
Z 22 e bintobin  P[i][j] ,

wherea is the albedo, and the powers of bietobin  matrix are precomputed. The numiger
of terms required depends amnd the range & but is O(1) as a function of For the images in
the results section, | us&= 12 terms.

This approximation was checked by comparison with the Monte Carlo simulation described
by Hanrahan and Krueger [Hanr93], and agreed well even when the scattering was not forward.
(The box on page 170 of [Hanr93] giving the Monte Carlo simulation has three errors, confirmed
by the authors. The absolute value signs arognd the expression for cgshould be removed,
the last row in the vectarshould be - co$ sin ©, and there is no need to adjust the weight using
the distance to the boundanditauses the particle to leave the layer.)

The multiple scattering within one cell speeds up the cgewee of the iteration. Another
way to speed up the congeince is to process multiple scattering events trdift cells during
one sweep through the volume. ThBZAShooting bins in one of the six faces of the direction cube
are processed together as the receiving planes sweeps along the corresponding axis direction. The
enegy scattered from one direction bin to another in the same cube face can then be processed for
further transmission and scattering during the same sweep. When the scattering is predominately
forward, the scattered flux is likely to end up in a direction in the same cube face.

In order to maintain the O(lag) temporary arrays of siz¥ for each of the Q) directions
on a cube face, (IV(n2 log n) storage is required. This is asymptotically less than tMné)(
needed for théhrough andunshot arrays.

7. Final gathering pass

The final rendering uses an evaluation of the integral form of the transport equation along a
ray through each pixel, as a summation over the ray/element intersection segments. In this final
gathering step, | displaced the volume cells so that their vertices were at the centers of the original
elements, and used interpolated valuethadugh to give smoother shadingoTise the exact



directionw of the viewing ray, instead of just its direction bin, | computed the integrals

!’f (w, W) dw'

for each binB; once per viewing rayor else once per volume element, depending on which are
less numerous. This gives a smooth variation of the scattering with the viewing angle.

Similarly, theunshot flux is initialized from the attenuated light source flux areay
using integrals involving the exact direction to the light souroecomputeen, many illumina-
tion rays are traced through the volume, enough to cross each volume element multiple times. The
ray/element intersections are processed in the order of light propagation, to attenuate the intensity
by the element opacity, and to add the flux &mo

Note that the light source flux an is not transferred tthrough . The final gathering pass
computes the single scattering contribution using this accurately attenuated direct illumination,
without the shadow blurring caused by the spread out opacity weighting shown in figure 5. For
this single scattering, the phase function is evaluated using the exact directions of both the view-
ing and the direct illumination rays.

8. Cloud model

The geometry of the cloud is determined by the density &trayKajiya and ¥n Herzen
[Kaj84] computed this density with a meteorological simulation. Instead, for the purposes of test
rendering, | used a variant of the visual cloud model of Gardner [Gard84]. Gardner rendered the
surfaces of ellipsoids with a 3-D transparency texture based on a pseudo-fractal trigonometric
series. | wanted an analogous 3-D density function. | took quadratic polynomials of the form

C(x=x)? (Y-¥)? (z-7)?

a® b? c?

d

whose contours are ellipsoids, and used the maximum of several such ellipsoidal functions with
different parameters to define the union of ellipsoidal clouds. | then added on a version of Ken
Perlin’s 1f noise function [Perl85], to roughen and randomize the edges. Like Gaxthesrthe
volume function was negative, | Ikt = 0, giving complete transparendyiore sophisticated

cloud turbulence models are given in [Sak93] and the references therein.

9. Results

Figure 7 shows a cloud with the sun behind it, rendered with multiple anisotropic scattering.
Note that the cloud edges are brightest near the direction of the sun. Figure 8 shows the same
cloud from a diferent direction, with the green “grass” background color added for orientation.
For comparison, figure 9 shows the view in figure 8 with only single anisotropic scattering, and
figure 10, the dference of figure 8 minus figure 9, indicates the contribution of the higher order



scattering.

The cloud was defined on a 2424 x 18 voxel volume. The initial illumination pass, with
approximately 1000 illumination rays per voxel, took 120 seconds on an SGI 4D/35. The albedo
was .99, and the Henyey-Greenstein phase functiog ka&5, for forward scattering. | used 96
direction bins. Each of the 15 scattering passes took 15 minutes. The final rendering 38400
resolution took 5 minutes per frame. Once the multiple scattering flthhomgh has been
computed, frames can be rendered from any viewpoint, so the ZP® resolution frames on the
videotape took an average of two minutes each.

Figure 1L shows a side view and a top view of the cloud at sunset, using two light sources, an
orange one from near the horizon representing the sun, and another bluish one representing the
sky illumination. These frames took twice as long for the two passes. For the sky illumination, |
used the CIE standard clear sky directional luminance function [CIE37] to initializeshet
array on an extra shell of cells on the top and sides of the volume. Figure 12 shows a top view of
another cloud, using an orange point source for the setting sun, and a blue point source for the sky

10. Future work

This method should be applicable to engineering computations if black body emission is
included in the flux propagation, an easy modification.

Rushmeier [Rush88] and Kajiya [Kaj84] have pointed out that after a number of scattering
events, even a narrow forward phase function becomes more isotropic. This means that the later
scattering passes through the volume could use a smaller number of direction bins, for greater
speed, and still maintain accuracy.

Rushmeier [Rush 87, Rush88] handles surface and volume radiosity in a unified framework. |
currently do not handle surface radioshiyt it should be possible to include surface elements in
this method. In a common engineering application, the only surfaces are on the enclosure of the
participating medium. In this straightforward case, a directional pass through the volume begins
with the unshot flux leaving a shooting surface, as described above for the sky illumination, and
the flux exiting the sides or left over at the end is deposited on the appropriate receiving surface.

Langeret al. [Lang93] have applied the discrete ordinates method to general surface geome-
tries, using “surface nodes” with a bidirectional reflection distribution function at voxels contain-
ing surfaces. They can thus include anisotropic surface reflections, as well as isotropic volume
scattering and absorption. Their flux propagation, like mine, is along a discrete cube of directions,
and could be enhanced by my method to reduce the ray effects.
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